If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4v^2+12v-13=0
a = 4; b = 12; c = -13;
Δ = b2-4ac
Δ = 122-4·4·(-13)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-4\sqrt{22}}{2*4}=\frac{-12-4\sqrt{22}}{8} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+4\sqrt{22}}{2*4}=\frac{-12+4\sqrt{22}}{8} $
| 15+20=3x+10 | | 7n+96=180 | | 5/4v=-35 | | 3f+10=25 | | A(n)=3n-4 | | -2(c-8)+-10=-6 | | (x+2)/3=(x-1)/2 | | 7s+9=-3s+19 | | 2.10+5m=49.10 | | 13x-5x-7=4x+21 | | 4x+154=2x+132 | | -5u=-40 | | 1x-40=4x-4 | | -29=w-35 | | -4x-66=70 | | 2m-(-2)=12 | | 9=-3/4u | | -5/2y=-15 | | 3(7x-1)/4-(2x-(1/2)-x)=x+3/2 | | 2x(x+1)=2x²+511 | | 3y-6=+30 | | Y-7=15y= | | 2c+-3=9c+-10 | | |7p+8|=-20 | | (n+3)5/9=40 | | -7v/6=-35 | | -x-1=(-4) | | 2/5w=104/5 | | p-10=7+p-5 | | -10=2(5x+10) | | 6/m=18/15 | | 1.2x*7=4 |